
© Wandsworth Primary Mathematics Team 2014

```
Wandsworth LA Calculation Policy document written
by Nicki Ashton & Catherine Brown, Primary Teaching
    & Learning Consultants (Mathematics).
```


Acknowledgements

```
With thanks to the contributions from the
Wandsworth Primary Curriculum Development Group:
\begin{tabular}{ll} 
Amelia Alcock & Albemarle Primary School \\
Michael Foyn & Allfarthing Primary School \\
Annie Ball & Brandlehow Primary School \\
Alex Smeed & Eardley Primary School \\
Tom Oakley & Earlsfield Primary School \\
Vivienne Dompreh & Franciscan Primary School \\
Hattie Elwes & Holy Ghost Primary School \\
Mary-Rose McKenna & Holy Ghost Primary School \\
Joanne Clark & Honeywell Infant School \\
Eimear Burke & Our Lady Queen of Heaven Primary School \\
Taryn Black & Riversdale Primary School \\
Kelly Ranford & Sacred Heart (Roe) RC Primary School \\
Lisa Platts & St Boniface Primary School \\
Simon Gallant & The Alton Primary School
\end{tabular}
```


Wandsworth LA Calculation Policy for addition: Year 1

Wandsworth LA Calculation Policy for addition: Year 2

7 Counting in fractions up to 10 , starting from any numbers and using the $1 / 2$ and ${ }^{2} / 4$ equivalence on the number line

-Solve problems:

- Using concrete objects, pictorial representations (numbers, quantities \& measures)
- Applying increasing knowledge of mental \& written methods
-Partition numbers in different ways
-Discuss and solve problems that emphasise the value of each digit in two-digit numbers

Wandsworth LA Calculation Policy for addition: Year 3

Add numbers mentally, including:

- a three-digit number and ones

Common mental calculation strategies:
Partitioning and recombining
Doubles and near doubles
Use number pairs to 10 and 100
Adding near multiples of ten and adjusting
Using patterns of similar calculations
Using known number facts
Bridging though ten, hundred Complementary addition

Add numbers with up to three digits, using formal written (columnar) methods

Add to three digit numbers using physical and abstract representations (e.g. straws, dienes, place
value counters, empty number lines, coins)
Use manipulatives to support structure of the algorithm especially place value

$\frac{200+30+4}{500+20+7}$
$700+60+1$
10
:---:
+527
761
1

Informal methods of recording are used as stepping stones to help children understand the logic of formal written methods.

Revert to concrete representations if children find expanded/column methods difficult
Use a range of concrete, pictorial and abstract rebresentations, including those below

Addition of fractions with the same denominator within one whole.
Addition of fractions with the same denominator
$2+3=5$
$\begin{array}{lll}5 & 5 & 5\end{array}$

Pupils should estimate the answers to a calculation \& use inverse operations to check answers.
Add amounts of money using both $£$ and p in practical contexts.
Measure, compare and add lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$), mass (kg / g) \& volume/capacity ($1 / \mathrm{ml}$)

Wandsworth LA Calculation Policy for addition: Year 4

Practise mental methods with increasingly large numbers

Consolidate partitioning and re-partitioning Bridge tens and hundreds using partitioning and 'part whole' Use compensation for adding too much/little and adjusting Use straws, Dienes, place value counters, empty number lines etc.

the same as $63+30-1$

$$
\begin{aligned}
55+37 & =55+30+7 \\
& =85+7 \\
& =92
\end{aligned}
$$

Common mental calculation strategies:
Partitioning and recombining
Doubles and near doubles
Use number pairs to 10 and 100
Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred Complementary addition
Add numbers with up to four digits, using the formal written (columnar) method $789+642$ becomes

Use physical/pictorial representations alongside expanded and columnar methods.

Use the bar model to reinforce the inverse relationship between addition \& subtraction
Addition of fractions with the same denominator to become fluent through a variety of increasingly complex problems beyond one whole Counting using simple fractions and decimals, both forwards and backwards

$$
\frac{1}{2}+\frac{2}{4}=\frac{2}{4}+\frac{2}{4}=1
$$

- Estimate and use inverse operations to check answers.
- Solve addition and subtraction two step problems in context, deciding which operations and methods to use and why
- Identify, represent and estimate numbers using different representations. (Place value)
- Recognise the place value of each digit in a four-digit number.
- Estimate, compare and calculate different measures, including amounts money in $£$ and p (including fractions and decimals)

Wandsworth LA Calculation Policy for addition: Year 5

Wandsworth LA Calculation Policy for addition: Year 6

- Perform mental calculations, including with mixed operations and large numbers (more complex calculations)
Children use representation of choice
Consolidate partitioning and re-partitioning for bridging boundaries (tens, hundreds, thousands, tenths, hundredths ...) Use compensation for adding too much/little and adjusting Refer back to pictorial and physical representations when needed.
Apply the rules of BIDMAS

Common mental calculation strategies:
Partitioning and recombining
Doubles and near doubles Use number pairs to 10 and 100
Adding near multiples of ten and adjusting Using patterns of similar calculations Using known number facts Bridging though ten, hundred, tenth Complementary addition

Add larger numbers using the formal written (columnar) method

£563.14	789+642 becomes
	789
+£207.88	+ 642
£771.02	1431
111	$1{ }^{1} 1{ }^{1}$
	Answer. 1431

Revert to expanded methods if children find formal calculation method difficult (see Y3)
Use physical/pictorial representations alongside columnar methods where needed. Ask what is

the same and what is different?

x and y represent whole numbers. Their sum is 1000. x is 250 more than y. What are the values of x and y ?

Using the bar model to solve problems
Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money

Wandsworth LA Calculation Policy for subtraction Year 1

Pupils should combine and increase numbers, counting forwards and backwards.
(They should) develop the concept of addition and subtraction and ... use these operations flexibly. Problems should include the terms: put together, add, altogether, total, take away, distance between, difference between, more than and less than, so that pupils develop the concept of addition and subtraction and are enabled to use these operations flexibly.
(Number-addition and subtraction, Non-statutory guidance.)
Pupils discuss and solve problems in familiar practical contexts . (Non-statutory guidance.)
Pupils compare, describe and solve practical (measurement) problems .
(Measurement)

Wandsworth LA Calculation Policy for subtraction Year 2

Wandsworth LA Calculation Policy for subtraction Year 3

Add and subtract numbers mentally, including: *a three-digit number and ones
*a three-digit number and tens
*a three-digit number and hundreds.

247	
173	74

$173+74=247$
$74+173=247$
$247-173=74$
$247-74=173$
Use a number line, Dienes, 100 squares, 200 hundred squares, and similar representations, to support mental calculations. (See below.)

Use known number facts and place value to subtract Continue as in Year 2 but with appropriate numbers e.g. $97-15=72$
$\underbrace{82}_{-5}$

With practice, onudren will need to record less information and decide whether to count back or forward. It is useful to ask children whether counting up or back is the more efficient for calculations
such as $57-12,86-77$ or $43-28$.
Pencil and paper procedures
Complementary addition
$34-56=28$

Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.

	Partitioning and re-partitioning support the understanding of place-value. All of these representations still comprise the amount of 36 .
	Introduce transition from concrete place value representations, (e.g. dienes or straws), to pictorial - such as place value counters or money. Revert to concrete manipulatives and 10 expanded methods whenever difficulties arise 132 in Dienes 132 in place value counters.
	Count up and down in tenths. Add and subtract fractions with the same denominator within one whole. $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$ Adding Fractions Bar model
	Money and calculating duration of events (with number lines.) For example: "Add and subtract amounts of money to give change, using both $£$ and p in practical contexts." "Compare durations of events [for example to calculate the time taken by particular events or tasks]." (Measurement)

Wandsworth LA Calculation Policy for subtraction Year 4

Wandsworth LA Calculation Policy for subtraction Year 5

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
- Subtract numbers mentally with increasingly large numbers. E.g. 12462 - \(2300=10162\) \\
- Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy . \\
- Pupils practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, 1-0.17 = 0.83). \\
- Pupils mentally add and subtract tenths, and one-digit whole numbers and tenths.
\end{tabular} \& \begin{tabular}{l}
Basic Ment \\
- Find diffe \\
- Partition \\
- Applying \\
- Bridging \\
- Subtractin \\
- Counting \\
Children us back to phy
\end{tabular} \& \begin{tabular}{l}
tegies for Subtraction \\
by counting up \\
facts \\
h 10 and multiples 1 etc. by compensa or back from the la National \\
isualise, representa
\end{tabular} \& \begin{tabular}{l}
else co it? \\
number ulum 19 \\
choice.
\end{tabular} \\
\hline \multirow{3}{*}{} \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). \\
(Pupils) practise adding and subtracting decimals. \\
Begin with three-digit numbers using formal, columnar method; then move into four-digit numbers.
\end{tabular}} \\
\hline \& \multicolumn{4}{|l|}{\begin{tabular}{l}
As in Year 4, compare physical and / or pictorial representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? \\
Compare and discuss the suitability of different methods, (mental or written), in context. \\
Revert to expanded methods whenever difficulties arise
\end{tabular}} \\
\hline \& \[
\begin{array}{rc}
\& £ 17.34-£ 12.1 \\
\& 2 \\
1000+700+20+14 p \& 1734 p \\
-1000+200+10+6 p \\
\hline \underline{500+10+8 p} \& \frac{-1216 p}{518 p} \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
f 2 \\
17.34 \\
-12.16 \\
\hline 5.18 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
What is the same about these mode What's different? \\
Relate place value of of whole numbers us tions. See below.
\end{tabular} \& als with present \\
\hline \& \multicolumn{4}{|l|}{} \\
\hline \& \multicolumn{4}{|l|}{Use physical and pictorial representations to stress the place value relationships between money, decimals and whole numbers. A place value mat such as the this one could be used, moving away from the traditional: Hundreds, tens and ones model used in Lower KS2 and KS1.} \\
\hline 7

0

0 \& \multicolumn{4}{|l|}{| Subtract fractions with the same denominator and denominators that are multiples of the same number. |
| :--- |
| (Include fractions exceeding 1 as a mixed number.) |
| Solve problems involving number up to three decimal places. |
| They mentally add and subtract tenths, and one-digit whole numbers and tenths. |}

\hline \& \multicolumn{4}{|l|}{| Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. |
| :--- |
| Use all four operations to solve problems involving time, money and measure using decimal notation.; (up to 3d.p.) |}

\hline
\end{tabular}

Wandsworth LA Calculation Policy for subtraction Year 6

	Children: - Perform mental calculations, including with mixed operations and large numbers. - Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. - They undertake mental calculations with increasingly large numbers and more complex calculations.
	$\frac{\text { Use known number facts and place value to subtract }}{0.5-0.31=0.19}$ $0.5-0.31=0.1$
	Children draw on basic, Mental subtraction Strategies, (See Year 5.) Children use, or visualise, representation of choice. Refer back to physical representations as required.
	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Solve problems involving the calculation and conversions of units of measure, using decimal notation of up to three decimal places where appropriate. (MEASURES)
	Move towards consolidation of formal, columnar method. For more complex calculations, with increasingly larger or smaller numbers, compare representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? Compare and discuss the suitability of different methods, (mental or written), in context. Revert to expanded methods whenever difficulties arise
	Add and subtract fractions with different denominators and mixed numbers. They practise calculations with simple fractions and decimal fraction equivalents to aid fluency.
	Use their knowledge of the order of operations to carry out calculations involving the four operations (BIDMAS) Solve problems involving all four operations Algebra: use symbols and letters to represent variable and unknowns e.g. $a+b=b+a$ Using the number line, pupils use, add and subtract positive and negative integers for measures such as temperature.

Wandsworth LA Calculation Policy for multiplication: Year 1

Wandsworth LA Calculation Policy for multiplication: Year 2

	- Recall and use multiplication and division facts for the 2,5 and $\mathbf{1 0}$ multiplication tables, connecting the 2, 5 and 10 multiplication tables to each other - Connect the 10 multiplication table to place value - Recognise odd and even numbers - show that multiplication of two numbers can be done in any order multiples of (commutative) 2/5/10 are - Use a variety of language to describe multiplication and division always/never - Apply doubling of numbers up to ten to doubling larger numbers
	- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs - Begin to use other multiplication tables and recall facts to perform written calculations $7 \times 2=\square$ - Use a range of materials and contexts ... including arrays and repeated addition $\square \times 2=14$ $\triangle x \square=14$
	Use a range of concrete and pictorial representations, including: What multiplication sentences can you write with these numbers: $5,10,50$? Counting tally marks to support counting in 5 s . 3 multiplied by 5 \qquad 3×5 $3+3+3+3+3=$ Using the bar model to solve problems A book costs $£ 5$. Rosie buys twice as many as Jim. How much do they spend altogether? Contextualise the maths: Would you rather have: 4 packets of biscuits with 5 in each packet, or 3 packets of biscuits with 10 in each packet? Explain your answer.

- write simple fractions for example, 1/2 of $6=3$ and recognise the equivalence of two quarters and one half
- Begin to relate multiplication and division models to fractions and measures

- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.
- Use commutativity and inverse relations to develop multiplicative reasoning (e.g. $4 \times 5=20$ and $20 \div 5=4$)
- Statistics-interpret and consttruct simple pictograms, tally charts and block diagrams
- Measurement-coiunting 5 minute intervals on a clock face
- Place value count in steps of 2, $\mathbf{3}$ and 5 from 0 and in tens from any number, forwards and backwards

Wandsworth LA Calculation Policy for multiplication: Year 3

- write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, progressing to formal written methods
- Estimate before calculating
- Ensure written methods build on/relate to mental methods

Towards the column method ...				
\times	20	4		24×6 becomes
6	120	24	24	
$120+24=144$				
		\Rightarrow	$\begin{array}{r}120 \\ 24 \\ \hline\end{array}$	$\times \quad 6$ $\times 144$
			144	2
				Answer: 144

$$
\begin{aligned}
& \text { What's the same? } \\
& \text { what's different } \\
& \text { about these two } \\
& \text { times tables? }
\end{aligned}
$$

- recognise and show, using diagrams, equivalent fractions with small denominators

$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	\mathbf{v}	$\mathbf{1 0}$
$\mathbf{2}$	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	6	0	12	15	18	21	24	27	30

3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	3	40

4	8	12	16	20	24	28	32	36
40								
5	10	15	20	25	30	35	40	45

5	10	15	20	25	30	35	40	45

- solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which \mathbf{n} objects are connected to \mathbf{m} objects.
- The comparison of measures includes simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high)
- Pupils now use multiples of $2,3,4,5,8,10,50$ and 100.
- Pupils understand and use simple scales (for example, $2,5,10$ units per cm) in pictograms and bar charts with increasing accuracy.

Wandsworth LA Calculation Policy for multiplication: Year 4

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including:
- multiplying by 0 and 1 ;
- recognise and use factor pairs and commutativity in mental calculations
- practise mental methods and extend this to three-digit numbers to derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$)
- apply understanding of the equals sign
- link facts within the tables (e.g. $5 \times$ is half of $10 \times$)
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- Estimate before calculating
- Ensure written methods build on/relate to mental methods (e.g. grid method) based on an understanding of place value
- Use grid and expanded column methods as stepping stones alongside

Using the distributive law: $39 \times 7=30 \times 7+9 \times 7$
Using the associative law: $(2 \times 3) \times 4=2 \times(3 \times 4)$
$2 \times 6 \times 5=10 \times 6=60$

Key skills to support:

- know or quickly recall multiplication facts up to 12×12
- understand the effect of multiplying numbers by 10,100 or 1000
- multiply multiples of 10 , for example, 20 $\times 40$;
- approximate, e.g. recognise that 72×38 is approximately $70 \times 40=2800$ and use this information to check whether their answer appears sensible
Revert to expanded methods if children find formal calculation method difficult

- recognise and show, using diagrams, families of common equivalent fractions
- understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths.
- make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities.
- use factors and multiples to recognise equivalent fractions and simplify where appropriate
$\frac{4}{10} \quad \frac{6}{15} \quad \frac{8}{20} \quad \frac{10}{25} \quad \frac{12}{30} \quad \frac{14}{35} \quad \frac{16}{40}$

[^0]
Wandsworth LA Calculation Policy for multiplication: Year 5

- multiply and divide numbers mentally drawing upon known facts
 - multiply and divide whole numbers and those involving decimals by 10, 100 \& 1000

- Recognise and use square \& cube numbers (\& notation)
- Use factors and multiples as connected ideas: 48 is a multiple of 6 and 6 is a factor of 48

Pupils should be taught throughout that percentages, decimals and fractions are different ways of expressing proportions.

- multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers

Revert to expanded methods if children find formal calculation method difficult (see $\mathrm{Y} 3 / \mathrm{Y} 4$) seem reasonable?

Compact methods for multiplication are efficient but often do not make the value of each digit explicit. When introducing multiplication of decimals, it is sensible to take children back to an expanded form such as the grid method where the value of each digit is clear, to ensure that children understand the process.

Spider diagrams To be successful at multiplying decimal numbers using a written method, chidren need to be completely secure in using known mutiplication facts to derive linked decimal facts. Spider diagrams provide a visual way of recording these facts.		Example of constructing equivalence statements: $\begin{aligned} & 4 \times 35=2 \times 2 \times 35 \\ & 3 \times 270=3 \times 3 \times 9 \times 10 \\ & =92 \times 10 \end{aligned}$

- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to division, building on work from previous years. This relates to scaling by simple fractions, including fractions > 1 .

Two ways to calculate $1 \times \times 8$:

$$
\begin{aligned}
& \text { Encourage children to draw diagrams to represent situations or problems involving fractions. } \\
& \text { Model how to do this, for example: } \\
& 2 / 5 \text { of a number is } 20 \text {. What is the number? } \begin{array}{|l|l|l|l|l|}
\hline 10 & 10 & 10 & 10 & 10 \\
\hline 20
\end{array} \text { Whole }=50
\end{aligned}
$$

What is k of 8 object?	What is $\%$ of 8 objects?	$\begin{aligned} & 4 \times 8=8+4=2 \\ & 1 \text { part }=2 \text {. } \end{aligned}$
880	0508	3 parts $=2 \times 3$
		So $\% \times 8=(8+4) \times 3=6$
\square		$\% \times 8=\frac{(3 \times 8)}{4}$ We find the number of $1 / 4 \sin 1 / 4 \times 8$ There are 24 quarters in $1 / 2 \times 8$. That is equal to 6

- identify multiples \& factors, including finding all factor pairs of a number, \& common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes, and including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.
- convert between different units of metric measure; problems including money,.

Other links: ratio,
Pupils use their knowledge of place value and multiplication and division to convert between standard units.
Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of perimeter or area to find unknown lengths. Missing measures questions such as these can be expressed algebraically, for example $4+2 b=20$ for a rectangle of sides 2 cm and bcm and perimeter of 20 cm .
Pupils calculate the area from scale drawings using given measurements.

Wandsworth LA Calculation Policy for multiplication: Year 6

-multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2=1 / 8$

Three key applications of understanding:

- Recognise that $1 / 4$ of $12,1 / 4 \times 12$ and 12 divided by 4 are equivalent
- Use cancellation to simplify the product of a fraction and an integer e.g. $1 / 5 \times 15=3,2 / 5 \times 15=2 \times 1 / 5 \times 15=$ $2 \times 3=6$
- Work out how many $1 / 2 \sin 15$, how many $2 / 5$ s in 15 , how many $2 / 5$ s in 1 etc.

To calculate $1 / 2 x 1 / 2$, find $1 / 2$ of a rectangle/array, then divide that $1 / 2$ into $1 / 4$. So $1 / 4$ of $1 / 2$ is $1 / 8$

Pupils should use a variety of images to support their understanding of multiplication with fractions. This follows earlier work about fractions as operators (fractions of), as numbers, and as equal parts of objects, e.g. as parts of a rectangle.
-identify common factors, common multiples and prime numbers

- use their knowledge of the order of operations to carry out calculations involving the four operations
- solve problems involving addition, subtraction, multiplication and division
- explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$.
- Fractions, decimals and percentages including equivalences in different contexts.
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
- solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
- Algebra including formulae, linear number sequences, combinations of variables
- Measurement including solving problems with conversion of units, decimal notation, area \& volume
- Statistics including pie charts, line charts and calculating the mean

Wandsworth LA Calculation Policy for division: Year 1

Wandsworth LA Calculation Policy for division: Year 2

Division and multiplication concepts must be linked continuously.

	The relationship between multiplication and division must be continually considered.
	- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. - Calculate mathematical statements for multiplication and division within - the multiplication tables and write them using the
	" 5 , one time", " 5 , two times" and so on. - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. (See below.) "There are 26 straws. $1 / 2$ of the straws is equal to 13 straws." $1 / 2$ of $26=13$ $26 \div 2=13$ Pupils decode a problem first, represent it using manipulatives and jottings; and finally record it symbolically.

R

Wandsworth LA Calculation Policy for division: Year 3

- Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10.
- Recognise and show, using diagrams, equivalent fractions with small denominators.
- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.

Pupils solve simple problems in contexts, including measuring and scaling contexts, (e.g., four times as high etc.) and correspondence problems.

Wandsworth LA Calculation Policy for division: Year 4

Pupils should be taught to:

- recognise and show, using diagrams, families of common equivalent fractions
- recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.

- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths

[^1]- Convert between different units of measure [for example, kilometre to metre; hour to minute]
- Estimate, compare and calculate different measures, including money in pounds and pence (MEASURES)
- Recognise that hundreths arise when dividing an object by one hundred and dividing tenths by ten.
(FRACTIONS)

Wandsworth LA Calculation Policy for division: Year 5

Wandsworth LA Calculation Policy for division: Year 6

	. Pupils should be taught to: - perform mental calculations, including with mixed operations and large numbers. - use their knowledge of the order of operations to carry out calculations involving the four operations. - identify common factors, common multiples and prime numbers. I know that 366 will divide by 6 because it has 2 and 3 as factors - Solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
	- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context. - Pupils practise division for larger numbers, using the formal written methods of short and long division.
	Revert to expanded methods if children find formal calculation method difficult
	- use common factors to simplify fractions, -compare and order fractions, including fractions >1 -add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$.] \bullet-associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375.] -Pupils use their understanding of the relationship between unit fractions and division to work backwards. use written division methods in cases where the answer has up to 2 dp .
	- Pupils are introduced to the division of decimal numbers by one-digit whole number, initially, in practical contexts involving measures and money. They recognise division as the inverse of " 8 is the best estimate for $72.34 \div 8.91$; multiplication. because the numbers in the algorithm - Pupils also develop their skills of rounding and estimating. This includes can be rounded to $72 \div 9$." rounding answers to a specified degree of accuracy and checking the reasonableness of their answers. (FRACTIONS) - solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate. - use, read, write and convert between standard units.... using decimal notation to up to 3d.p. (MEASURES) - interpret and construct pie charts and line graphs and use these to solve problems - calculate and interpret the mean as an average. (STATISTICS) - solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts (RATIO AND PROPORTION)

Calculation Policy References

As much as possible, the supporting images used throughout this document have been created by the Wandsworth Curriculum Development Group. Where this has not been possible, the images are referenced as follows:

	- Number track www.sparklebox.co.uk (Year 1) - Straw bundles image www.idoradesign.blogspot.com (Years 1 and 2) - Addition with place value counters http://mathsframe.co.uk/en/resources/resource/241/ Expanded Addition using Place Value Counters (Year 5)
	- Interactive hundred square http://www.crickweb.co.uk/ks1numeracy.html (Year 2, subtraction) - http://langfordmath.com/ECEMath/BasicFacts/CuisenaireAddSubText.html: http://mathsframe.co.uk/en/resources/resource/242/ Column Subtraction using Place Value Counters (Year 5) - http://mathsframe.co.uk/en/resources/resource/24/timetable (Year 5, Links with other strands)
	- Mumsnet.com - Socks image www.boden.co.uk (Year 1) - ITP Multiplication array http://www.teachfind.com/national-strategies/mathematics-itp-multiplication-array (Year 3) - Moving digits ITP http://www.taw.org.uk/lic/itp/mov digits.html (Years 4 and 5) - Function machine ITP http://mathsframe.co.uk/en/resources/resource/70/itp function machine (Year 6)
	- Socks image http://www.comparestoreprices.co.uk/dolls/zapf-creation-baby-annabell-2-pairs-of-socks-759950-.asp (year 1) - Counting by 2 song http://www.youtube.com/watch?v=hae10bsW CM (Year 1) - Domino doubles www.yescoloring.com (Year 1) - Division triangles http://www.topmarks.co.uk/Flash.aspx?f=triangularcardsv4 (Year 2) Clock face www.wyzant.com (Year 2) - http://www.cimt.plymouth.ac.uk/projects/mepres/primary/pb3b 2.pdf (Links from other strands year 3) - Fractions http://mathsframe.co.uk/en/resources/resource/144/fractions of numbers (Year 3) - Arrays, Multiplication and Division article by Jennie Pennant http://nrich.maths.org/8773 (Year 4) - Fractions ITP http://www.taw.org.uk/lic/itp/fractions.html (Year 4) - Adding and Subtracting Fractions www.mathsframe.co.uk (Year 6, fractions) - Factors www.teacherled.com (Year 6)
	- DfE Models and images for understanding and manipulating numbers in Years 1 to 3 (2003) - DCSF Overcoming Barriers in Mathematics (2007) Crown Copyright; materials from CD-Roms - NCETM, images to support the teaching of the 4 operations from PD Lead Support Programme training - NCETM Calculation Guidance for Primary Schools (2015)

[^0]: - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to \mathbf{m} objects.
 - Convert between different units of measure (e.g. km to \mathbf{m}) - use multiplication to convert from larger to smaller units
 - Understand the relation between non-unit fractions and multiplication/division of quantities. With particular emphasis on tenths and hundredths
 - relate area to arrays and multiplication.
 - Problem solving work can involve finding all possibilities and combinations drawing on knowledge of multiplication tables facts
 - Pupils understand and use a greater range of scales in their representations (Statistics)

[^1]: spueגłs גәчłо
 woıf syu!

